3.3.5 \(\int \frac {\cot ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\) [205]

3.3.5.1 Optimal result
3.3.5.2 Mathematica [A] (warning: unable to verify)
3.3.5.3 Rubi [A] (verified)
3.3.5.4 Maple [B] (verified)
3.3.5.5 Fricas [A] (verification not implemented)
3.3.5.6 Sympy [F]
3.3.5.7 Maxima [F]
3.3.5.8 Giac [A] (verification not implemented)
3.3.5.9 Mupad [F(-1)]

3.3.5.1 Optimal result

Integrand size = 23, antiderivative size = 355 \[ \int \frac {\cot ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{5/2} d}-\frac {9683 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{4096 \sqrt {2} a^{5/2} d}-\frac {1491 \cot (c+d x) \sqrt {a+a \sec (c+d x)}}{4096 a^3 d}+\frac {5587 \cot ^3(c+d x) (a+a \sec (c+d x))^{3/2}}{6144 a^4 d}-\frac {1527 \cos (c+d x) \cot ^3(c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right ) (a+a \sec (c+d x))^{3/2}}{2048 a^4 d}-\frac {145 \cos ^2(c+d x) \cot ^3(c+d x) \sec ^4\left (\frac {1}{2} (c+d x)\right ) (a+a \sec (c+d x))^{3/2}}{1024 a^4 d}-\frac {9 \cos ^3(c+d x) \cot ^3(c+d x) \sec ^6\left (\frac {1}{2} (c+d x)\right ) (a+a \sec (c+d x))^{3/2}}{256 a^4 d}-\frac {\cos ^4(c+d x) \cot ^3(c+d x) \sec ^8\left (\frac {1}{2} (c+d x)\right ) (a+a \sec (c+d x))^{3/2}}{128 a^4 d} \]

output
2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d+5587/6144*co 
t(d*x+c)^3*(a+a*sec(d*x+c))^(3/2)/a^4/d-1527/2048*cos(d*x+c)*cot(d*x+c)^3* 
sec(1/2*d*x+1/2*c)^2*(a+a*sec(d*x+c))^(3/2)/a^4/d-145/1024*cos(d*x+c)^2*co 
t(d*x+c)^3*sec(1/2*d*x+1/2*c)^4*(a+a*sec(d*x+c))^(3/2)/a^4/d-9/256*cos(d*x 
+c)^3*cot(d*x+c)^3*sec(1/2*d*x+1/2*c)^6*(a+a*sec(d*x+c))^(3/2)/a^4/d-1/128 
*cos(d*x+c)^4*cot(d*x+c)^3*sec(1/2*d*x+1/2*c)^8*(a+a*sec(d*x+c))^(3/2)/a^4 
/d-9683/8192*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2)) 
*2^(1/2)/a^(5/2)/d-1491/4096*cot(d*x+c)*(a+a*sec(d*x+c))^(1/2)/a^3/d
 
3.3.5.2 Mathematica [A] (warning: unable to verify)

Time = 3.44 (sec) , antiderivative size = 287, normalized size of antiderivative = 0.81 \[ \int \frac {\cot ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\cos ^5\left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) \left (\left (-29258+3200 \csc ^2\left (\frac {1}{2} (c+d x)\right )-128 \csc ^4\left (\frac {1}{2} (c+d x)\right )+18225 \sec ^2\left (\frac {1}{2} (c+d x)\right )-4470 \sec ^4\left (\frac {1}{2} (c+d x)\right )+696 \sec ^6\left (\frac {1}{2} (c+d x)\right )-48 \sec ^8\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\sec (c+d x)}+49152 \arctan \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {1}{1+\sec (c+d x)}}}\right ) \cot \left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\sec (c+d x)}{(1+\sec (c+d x))^2}} \sqrt {1+\sec (c+d x)}-29049 \arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ) \cot \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {1+\sec (c+d x)}\right ) \sin \left (\frac {1}{2} (c+d x)\right )}{3072 d (a (1+\sec (c+d x)))^{5/2}} \]

input
Integrate[Cot[c + d*x]^4/(a + a*Sec[c + d*x])^(5/2),x]
 
output
(Cos[(c + d*x)/2]^5*Sec[c + d*x]^(5/2)*((-29258 + 3200*Csc[(c + d*x)/2]^2 
- 128*Csc[(c + d*x)/2]^4 + 18225*Sec[(c + d*x)/2]^2 - 4470*Sec[(c + d*x)/2 
]^4 + 696*Sec[(c + d*x)/2]^6 - 48*Sec[(c + d*x)/2]^8)*Sqrt[Sec[c + d*x]] + 
 49152*ArcTan[Tan[(c + d*x)/2]/Sqrt[(1 + Sec[c + d*x])^(-1)]]*Cot[(c + d*x 
)/2]*Sqrt[Sec[c + d*x]/(1 + Sec[c + d*x])^2]*Sqrt[1 + Sec[c + d*x]] - 2904 
9*ArcSin[Tan[(c + d*x)/2]]*Cot[(c + d*x)/2]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[ 
(1 + Sec[c + d*x])^(-1)]*Sqrt[1 + Sec[c + d*x]])*Sin[(c + d*x)/2])/(3072*d 
*(a*(1 + Sec[c + d*x]))^(5/2))
 
3.3.5.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 377, normalized size of antiderivative = 1.06, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.739, Rules used = {3042, 4375, 374, 27, 441, 27, 441, 27, 441, 27, 445, 27, 445, 25, 27, 397, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^4(c+d x)}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cot \left (c+d x+\frac {\pi }{2}\right )^4 \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4375

\(\displaystyle -\frac {2 \int \frac {\cot ^4(c+d x) (\sec (c+d x) a+a)^2}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )^5}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{a^4 d}\)

\(\Big \downarrow \) 374

\(\displaystyle -\frac {2 \left (\frac {\int \frac {a \cot ^4(c+d x) (\sec (c+d x) a+a)^2 \left (5-\frac {11 a \tan ^2(c+d x)}{\sec (c+d x) a+a}\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )^4}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{16 a}+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{16} \int \frac {\cot ^4(c+d x) (\sec (c+d x) a+a)^2 \left (5-\frac {11 a \tan ^2(c+d x)}{\sec (c+d x) a+a}\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )^4}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 441

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {\int -\frac {3 a \cot ^4(c+d x) (\sec (c+d x) a+a)^2 \left (\frac {81 a \tan ^2(c+d x)}{\sec (c+d x) a+a}+17\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )^3}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{12 a}+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}-\frac {1}{4} \int \frac {\cot ^4(c+d x) (\sec (c+d x) a+a)^2 \left (\frac {81 a \tan ^2(c+d x)}{\sec (c+d x) a+a}+17\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )^3}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 441

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}-\frac {\int \frac {a \cot ^4(c+d x) (\sec (c+d x) a+a)^2 \left (\frac {1015 a \tan ^2(c+d x)}{\sec (c+d x) a+a}+503\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )^2}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{8 a}\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}-\frac {1}{8} \int \frac {\cot ^4(c+d x) (\sec (c+d x) a+a)^2 \left (\frac {1015 a \tan ^2(c+d x)}{\sec (c+d x) a+a}+503\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )^2}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 441

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {1}{8} \left (\frac {1527 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}-\frac {\int \frac {a \cot ^4(c+d x) (\sec (c+d x) a+a)^2 \left (\frac {7635 a \tan ^2(c+d x)}{\sec (c+d x) a+a}+5587\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{4 a}\right )+\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {1}{8} \left (\frac {1527 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}-\frac {1}{4} \int \frac {\cot ^4(c+d x) (\sec (c+d x) a+a)^2 \left (\frac {7635 a \tan ^2(c+d x)}{\sec (c+d x) a+a}+5587\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )+\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 445

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {1}{8} \left (\frac {1}{4} \left (\frac {1}{6} \int \frac {3 a \cot ^2(c+d x) (\sec (c+d x) a+a) \left (\frac {5587 a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1491\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )-\frac {5587}{6} \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}\right )+\frac {1527 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )+\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {1}{8} \left (\frac {1}{4} \left (\frac {1}{2} a \int \frac {\cot ^2(c+d x) (\sec (c+d x) a+a) \left (\frac {5587 a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1491\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )-\frac {5587}{6} \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}\right )+\frac {1527 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )+\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 445

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {1}{8} \left (\frac {1}{4} \left (\frac {1}{2} a \left (\frac {1491}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}-\frac {1}{2} \int -\frac {a \left (6701-\frac {1491 a \tan ^2(c+d x)}{\sec (c+d x) a+a}\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )-\frac {5587}{6} \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}\right )+\frac {1527 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )+\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {1}{8} \left (\frac {1}{4} \left (\frac {1}{2} a \left (\frac {1}{2} \int \frac {a \left (6701-\frac {1491 a \tan ^2(c+d x)}{\sec (c+d x) a+a}\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )+\frac {1491}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}\right )-\frac {5587}{6} \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}\right )+\frac {1527 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )+\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {1}{8} \left (\frac {1}{4} \left (\frac {1}{2} a \left (\frac {1}{2} a \int \frac {6701-\frac {1491 a \tan ^2(c+d x)}{\sec (c+d x) a+a}}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )+\frac {1491}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}\right )-\frac {5587}{6} \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}\right )+\frac {1527 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )+\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 397

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {1}{8} \left (\frac {1}{4} \left (\frac {1}{2} a \left (\frac {1}{2} a \left (8192 \int \frac {1}{\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )-9683 \int \frac {1}{\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )+\frac {1491}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}\right )-\frac {5587}{6} \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}\right )+\frac {1527 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )+\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 \left (\frac {1}{16} \left (\frac {1}{4} \left (\frac {1}{8} \left (\frac {1}{4} \left (\frac {1}{2} a \left (\frac {1}{2} a \left (\frac {9683 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {2} \sqrt {a}}-\frac {8192 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a}}\right )+\frac {1491}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}\right )-\frac {5587}{6} \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}\right )+\frac {1527 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )+\frac {145 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{8 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^2}\right )+\frac {9 \cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^3}\right )+\frac {\cot ^3(c+d x) (a \sec (c+d x)+a)^{3/2}}{16 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )^4}\right )}{a^4 d}\)

input
Int[Cot[c + d*x]^4/(a + a*Sec[c + d*x])^(5/2),x]
 
output
(-2*((Cot[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2))/(16*(2 + (a*Tan[c + d*x]^ 
2)/(a + a*Sec[c + d*x]))^4) + ((9*Cot[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2 
))/(4*(2 + (a*Tan[c + d*x]^2)/(a + a*Sec[c + d*x]))^3) + ((145*Cot[c + d*x 
]^3*(a + a*Sec[c + d*x])^(3/2))/(8*(2 + (a*Tan[c + d*x]^2)/(a + a*Sec[c + 
d*x]))^2) + (((-5587*Cot[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2))/6 + (a*((a 
*((-8192*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/Sqrt[a] 
+ (9683*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]) 
/(Sqrt[2]*Sqrt[a])))/2 + (1491*Cot[c + d*x]*Sqrt[a + a*Sec[c + d*x]])/2))/ 
2)/4 + (1527*Cot[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2))/(4*(2 + (a*Tan[c + 
 d*x]^2)/(a + a*Sec[c + d*x]))))/8)/4)/16))/(a^4*d)
 

3.3.5.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 374
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
 + 1)/(a*e*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[b*c*(m + 1) + 2*(b*c - 
a*d)*(p + 1) + d*b*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, 
c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinomialQ[a, b, 
 c, d, e, m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 441
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a 
+ b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(a*g*2*(b*c - a*d)*(p + 1))), x] + Si 
mp[1/(a*2*(b*c - a*d)*(p + 1))   Int[(g*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2 
)^q*Simp[c*(b*e - a*f)*(m + 1) + e*2*(b*c - a*d)*(p + 1) + d*(b*e - a*f)*(m 
 + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m, q}, 
 x] && LtQ[p, -1]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4375
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_.), x_Symbol] :> Simp[-2*(a^(m/2 + n + 1/2)/d)   Subst[Int[x^m*((2 + a*x^2 
)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x] 
]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && I 
ntegerQ[n - 1/2]
 
3.3.5.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(709\) vs. \(2(310)=620\).

Time = 1.93 (sec) , antiderivative size = 710, normalized size of antiderivative = 2.00

method result size
default \(-\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (29049 \cos \left (d x +c \right )^{3} \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {2}\, \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}\right )-49152 \cos \left (d x +c \right )^{3} \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+87147 \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}\right ) \cos \left (d x +c \right )^{2}-147456 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+87147 \sqrt {2}\, \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-147456 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+29049 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}\right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+29258 \cos \left (d x +c \right )^{3} \cot \left (d x +c \right )^{3}-49152 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+28466 \cot \left (d x +c \right )^{3} \cos \left (d x +c \right )^{2}-28116 \cos \left (d x +c \right ) \cot \left (d x +c \right )^{3}-34852 \cot \left (d x +c \right )^{3}+4490 \cot \left (d x +c \right )^{2} \csc \left (d x +c \right )+8946 \cot \left (d x +c \right ) \csc \left (d x +c \right )^{2}\right )}{24576 d \,a^{3} \left (\cos \left (d x +c \right )+1\right )^{3}}\) \(710\)

input
int(cot(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/24576/d/a^3*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)^3*(29049*cos(d*x+c) 
^3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*2^(1/2)*ln(csc(d*x+c)-cot(d*x+c)+(co 
t(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2))-49152*cos(d*x+c) 
^3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(- 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+87147*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1 
))^(1/2)*ln(csc(d*x+c)-cot(d*x+c)+(cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+cs 
c(d*x+c)^2-1)^(1/2))*cos(d*x+c)^2-147456*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2 
)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*co 
s(d*x+c)^2+87147*2^(1/2)*ln(csc(d*x+c)-cot(d*x+c)+(cot(d*x+c)^2-2*cot(d*x+ 
c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*co 
s(d*x+c)-147456*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos 
(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+29049*ln(csc(d*x 
+c)-cot(d*x+c)+(cot(d*x+c)^2-2*cot(d*x+c)*csc(d*x+c)+csc(d*x+c)^2-1)^(1/2) 
)*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+29258*cos(d*x+c)^3*cot(d*x+c) 
^3-49152*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c) 
+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+28466*cot(d*x+c)^3*cos(d*x+c)^2-28 
116*cos(d*x+c)*cot(d*x+c)^3-34852*cot(d*x+c)^3+4490*cot(d*x+c)^2*csc(d*x+c 
)+8946*cot(d*x+c)*csc(d*x+c)^2)
 
3.3.5.5 Fricas [A] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 868, normalized size of antiderivative = 2.45 \[ \int \frac {\cot ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
[-1/49152*(29049*sqrt(2)*(cos(d*x + c)^5 + 3*cos(d*x + c)^4 + 2*cos(d*x + 
c)^3 - 2*cos(d*x + c)^2 - 3*cos(d*x + c) - 1)*sqrt(-a)*log(-(2*sqrt(2)*sqr 
t(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 
3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) + a)/(cos(d*x + c)^2 + 2*cos(d*x + c 
) + 1))*sin(d*x + c) + 24576*(cos(d*x + c)^5 + 3*cos(d*x + c)^4 + 2*cos(d* 
x + c)^3 - 2*cos(d*x + c)^2 - 3*cos(d*x + c) - 1)*sqrt(-a)*log(-(8*a*cos(d 
*x + c)^3 + 4*(2*cos(d*x + c)^2 - cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + 
 c) + a)/cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c) + a)/(cos(d*x + c) 
+ 1))*sin(d*x + c) - 4*(14629*cos(d*x + c)^6 + 14233*cos(d*x + c)^5 - 1405 
8*cos(d*x + c)^4 - 17426*cos(d*x + c)^3 + 2245*cos(d*x + c)^2 + 4473*cos(d 
*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/((a^3*d*cos(d*x + c)^5 + 
 3*a^3*d*cos(d*x + c)^4 + 2*a^3*d*cos(d*x + c)^3 - 2*a^3*d*cos(d*x + c)^2 
- 3*a^3*d*cos(d*x + c) - a^3*d)*sin(d*x + c)), 1/24576*(29049*sqrt(2)*(cos 
(d*x + c)^5 + 3*cos(d*x + c)^4 + 2*cos(d*x + c)^3 - 2*cos(d*x + c)^2 - 3*c 
os(d*x + c) - 1)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x 
+ c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))*sin(d*x + c) + 24576*(cos(d*x + 
 c)^5 + 3*cos(d*x + c)^4 + 2*cos(d*x + c)^3 - 2*cos(d*x + c)^2 - 3*cos(d*x 
 + c) - 1)*sqrt(a)*arctan(2*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c) 
)*cos(d*x + c)*sin(d*x + c)/(2*a*cos(d*x + c)^2 + a*cos(d*x + c) - a))*sin 
(d*x + c) + 2*(14629*cos(d*x + c)^6 + 14233*cos(d*x + c)^5 - 14058*cos(...
 
3.3.5.6 Sympy [F]

\[ \int \frac {\cot ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\cot ^{4}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate(cot(d*x+c)**4/(a+a*sec(d*x+c))**(5/2),x)
 
output
Integral(cot(c + d*x)**4/(a*(sec(c + d*x) + 1))**(5/2), x)
 
3.3.5.7 Maxima [F]

\[ \int \frac {\cot ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {\cot \left (d x + c\right )^{4}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cot(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate(cot(d*x + c)^4/(a*sec(d*x + c) + a)^(5/2), x)
 
3.3.5.8 Giac [A] (verification not implemented)

Time = 1.39 (sec) , antiderivative size = 296, normalized size of antiderivative = 0.83 \[ \int \frac {\cot ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {3 \, {\left (2 \, {\left (4 \, {\left (\frac {2 \, \sqrt {2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {19 \, \sqrt {2}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \frac {369 \, \sqrt {2}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {2989 \, \sqrt {2}}{a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {512 \, \sqrt {2} {\left (12 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 21 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + 11 \, a^{2}\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a\right )}^{3} \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{24576 \, d} \]

input
integrate(cot(d*x+c)^4/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
1/24576*(3*(2*(4*(2*sqrt(2)*tan(1/2*d*x + 1/2*c)^2/(a^3*sgn(cos(d*x + c))) 
 - 19*sqrt(2)/(a^3*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 + 369*sqrt(2 
)/(a^3*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 - 2989*sqrt(2)/(a^3*sgn( 
cos(d*x + c))))*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*tan(1/2*d*x + 1/2*c) + 
 512*sqrt(2)*(12*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/ 
2*c)^2 + a))^4 - 21*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 
 1/2*c)^2 + a))^2*a + 11*a^2)/(((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*t 
an(1/2*d*x + 1/2*c)^2 + a))^2 - a)^3*sqrt(-a)*a*sgn(cos(d*x + c))))/d
 
3.3.5.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^4(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^4}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(cot(c + d*x)^4/(a + a/cos(c + d*x))^(5/2),x)
 
output
int(cot(c + d*x)^4/(a + a/cos(c + d*x))^(5/2), x)